Quantum Attacks on Symmetric Cryptography

Gregor Leander (joint work with Alex May)

MMC 2017

Outline

- **[Quantum Basics](#page-5-0)**
- **[Grover](#page-23-0)**
- 4 [Grover and Simon on Symmetric Crypto](#page-71-0)
- [The FX Construction](#page-76-0)

Main Message

- Quantum attacks on symmetric schemes understudied.
- Basic conclusion is: double the key-length.
- Two most popular generic ways of doing so:
	- Multiple-encryption
	- **FX-construction**
- Both not as good as you might think.
	- Multiple encryption: Kaplan 2014
	- FX construction: This talk

Horst Görtz Institute for IT-Security $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $2Q$

My Master Thesis (I/II)

 α . Gregor Leander Diplomarbeit QUANTENCOMPUTER Betreuer: Michael Hortmann, Jens Gamst

Horst Görtz Institute for IT-Security ■ $2Q$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

My Master Thesis(II/II)

for IT-Security ■ $2Q$

 4 ロ } 4 6 } 4 \pm } 4 \pm } 4 \pm }

Outline

- **[Grover](#page-23-0)**
- 4 [Grover and Simon on Symmetric Crypto](#page-71-0)
- [The FX Construction](#page-76-0)

From Bits to Qubits

One Qubit

The state x of one Qubit is a unit vector in \mathbb{C}^2 .

Just notation:

$$
|0\rangle = \left(\begin{array}{c}1\\0\end{array}\right)\quad\text{and}\quad |1\rangle = \left(\begin{array}{c}0\\1\end{array}\right)
$$

Examples for states:

$$
x_0 = |0\rangle \approx 0
$$

\n
$$
x_1 = |1\rangle \approx 1
$$

\n
$$
x_2 = \alpha_0 |0\rangle + \alpha_1 |1\rangle \approx ?
$$

where

$$
||\alpha_0||^2 + ||\alpha_1||^2 = 1
$$

Horst Görtz Institute for IT-Security

÷.

 299

 $\mathbf{A} \in \mathcal{F} \times \mathcal{A} \oplus \mathcal{F} \times \mathcal{A} \oplus \mathcal{F} \times \mathcal{A} \oplus \mathcal{F}$

Two Qubits

Two Qubits

The state x of two Qubits is a unit vector in $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

(Not) just notation:

$$
|0\rangle |0\rangle = |00\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ and } |0\rangle |1\rangle = |01\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}
$$

$$
|1\rangle |0\rangle = |10\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \text{ and } |1\rangle |1\rangle = |11\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}
$$

Two Qubits

Two Qubits

The state x of two Qubits is a unit vector in $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

Examples for states:

$$
x_0 = |00\rangle \approx 00
$$

\n
$$
x_1 = |10\rangle \approx 10
$$

\n
$$
x_2 = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle \approx ?
$$

where

$$
||\alpha_{00}||^2 + ||\alpha_{01}||^2 + ||\alpha_{10}||^2 + ||\alpha_{11}||^2 = 1
$$

Horst Görtz Institute for IT-Security ■

> 299 重.

 $\mathbf{A} \in \mathcal{F} \times \mathcal{A} \oplus \mathcal{F} \times \mathcal{A} \oplus \mathcal{F} \times \mathcal{A} \oplus \mathcal{F}$

n Qubits

n Qubits

The state *x* of *n* Qubits is a unit vector in $({\mathbb C}^2)^{\otimes n} \cong {\mathbb C}^{2^n}.$

Notation

For $x \in \mathbb{F}_2^n$ we denote

$$
|x\rangle = |x_1,\ldots,x_n\rangle = |x_1\rangle \ldots |x_n\rangle = e_x
$$

Examples:

$$
\phi_1 = |x\rangle \approx x
$$
 or $\phi_2 = \sum_{x \in \mathbb{F}_2^n} \alpha_x |x\rangle \approx ?$

 $||\alpha_x||^2 = 1$

Horst Görtz Institute for IT-Security ■

> 299 ミー

 \sum *x*∈F *n* 2

where

Computation: The principle

Given a quantum computer with *n* Qubits.

$$
\phi = \sum_{\mathbf{x} \in \mathbb{F}_2^n} \alpha_{\mathbf{x}} \ket{\mathbf{x}}
$$

How do we conpute on that? How does the state change?

Computation: The principle

Given a quantum computer with *n* Qubits.

$$
\phi = \sum_{\mathbf{x} \in \mathbb{F}_2^n} \alpha_{\mathbf{x}} \ket{\mathbf{x}}
$$

How do we conpute on that? How does the state change?

$Computation = Unitary Matrices$

Any computation on a Quantum Computer corresponds to applying an unitary matrix.

Evolution of the state:

$$
\phi \Rightarrow U\phi
$$

As *U* is unitary:

$$
||\phi||^2 = ||\mathcal{U}\phi||^2 = 1
$$

Example: XOR

Two Qubit XOR:

XOR

Find *U* such that

$$
\ket{ab} = \ket{a}\ket{b} \mapsto \ket{a}\ket{a \oplus b}
$$

Horst Görtz Institute for IT-Security ■ イロメイ団 トイミメイミメ \equiv 990

Example: XOR

Two Qubit XOR:

XOR

Find *U* such that

$$
\ket{\textit{ab}} = \ket{\textit{a}} \ket{\textit{b}} \mapsto \ket{\textit{a}} \ket{\textit{a} \oplus \textit{b}}
$$

On the basis we get:

$$
U|00\rangle = |00\rangle \qquad U|01\rangle = |01\rangle
$$

$$
U|10\rangle = |11\rangle \qquad U|11\rangle = |10\rangle
$$

Horst Görtz Institute for IT-Security ■ イロン イ団 メイミン イミン 299 ÷.

Example: XOR

Two Qubit XOR:

XOR

Find *U* such that

$$
\ket{ab} = \ket{a}\ket{b} \mapsto \ket{a}\ket{a \oplus b}
$$

Example: XOR

Two Qubit XOR:

XOR

Find *U* such that

$$
\ket{ab} = \ket{a}\ket{b} \mapsto \ket{a}\ket{a \oplus b}
$$

A permutation matrix:

$$
U = \left(\begin{array}{rrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)
$$

More general: Boolean Function

n Qubit Boolean Function:

$$
f:\mathbb{F}_2^n\to\mathbb{F}_2
$$

U_f on $(n + 1)$ Qubits

Find U_f such that for all $a \in \mathbb{F}_2^n$ and $b \in \mathbb{F}_2$:

 $|ab\rangle = |a\rangle |b\rangle \mapsto |a\rangle |f(a) \oplus b\rangle$

- *Uf* is quantum version of *f*
- Again a permutation matrix
- **•** Efficient if *f* is efficient on classical computers.

for IT-Security $2Q$

Non classical: Conditional Flip

One Qubit, no classical equivalent:

Phase flipping

Consider *U* such that

$$
|a\rangle\mapsto (-1)^a\,|a\rangle
$$

$$
U\left|0\right\rangle =\left|0\right\rangle \quad U\left|1\right\rangle =-\left|1\right\rangle
$$

 $0 -1$

 \setminus

Horst Görtz Institute I for IT-Security

> 299 ミー

 $U = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

As a matrix:

Last but not least: Hadamard

One one Qubit, again no classical equivalent:

Hadamard (ignoring scaling)

Consider *U* such that

$$
\left|a\right\rangle \mapsto\left|0\right\rangle +(-1)^{a}\left|1\right\rangle
$$

$$
U\left|0\right\rangle =\left|0\right\rangle +\left|1\right\rangle \quad U\left|1\right\rangle =\left|0\right\rangle -\left|1\right\rangle
$$

As a matrix:

 $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $1 -1$ \setminus

> Horst Görtz Institute for IT-Security

> > 2990 ミー

 $(1, 1, 2)$ $(1, 1, 2)$ $(1, 1, 2)$

Last but not least: Hadamard

Generalization to *n* Qubits:

Hadamard on *n* Qubits

Consider *H* [⊗]*ⁿ* such that

$$
\left|a\right\rangle \mapsto \sum_{x} (-1)^{\left\langle a,x\right\rangle }\left|x\right\rangle
$$

- *H* ⊗*n* is *H* applied to each Qubit.
- Thus, it is efficient if *H* is.
- **•** Special case:

$$
H^{\otimes n} |0\rangle = \sum_{x \in \mathbb{F}_2^n} |x\rangle
$$

for IT-Security

∍

 QQ

All Executions at Once

A small example

Putting things together: First *H*, then *U^f* .

$$
\begin{array}{rcl} \ket{0}\ket{0} & \mapsto & \displaystyle\sum_{x\in\mathbb{F}_2^n} \ket{x}\ket{0} \\ & \mapsto & \displaystyle\sum_{x\in\mathbb{F}_2^n} \ket{x}\ket{f(x)} \end{array}
$$

We evaluated a function on all inputs at once!

Measurement

Make it classical

In order to use the output of a QC classically, we have to measure the state.

Consider an *n*-Qubit state:

$$
\phi = \sum_{\mathbf{x} \in \mathbb{F}_2^n} \alpha_{\mathbf{x}} \ket{\mathbf{x}}
$$

Measurement

The measurement $M(\phi)$ of ϕ results in x with probability $||\alpha_x||^2.$ Horst Görtz Institute for IT-Security $2Q$

Measurement

Example on two Qubits

$$
x=\frac{1}{\sqrt{2}}\left|00\right\rangle-\frac{1}{\sqrt{2}}\left|11\right\rangle
$$

- $M(\phi) = 00$ with probability 1/2
- $M(\phi) = 11$ with probability 1/2
- $M(\phi) = 10$ with probability 0
- $M(\phi) = 00$ with probability 0

Task of Quantum Computing

Make the correct/interessting result appear with overwhelming probability.

astitute II ecurity ■ 290

Outline

[Grover and Simon on Symmetric Crypto](#page-71-0)

[The FX Construction](#page-76-0)

The Setting

Generic Search Problem

Given $f: \mathbb{F}_2^n \to \mathbb{F}_2$ such that

$$
f(x) = \left\{ \begin{array}{ll} 1 & \text{if } x = x_0 \\ 0 & \text{if } x \neq x_0 \end{array} \right.
$$

find x_0 .

Classically: We need $O(2^n)$ evaluations of *f*.

Grover's Solution On a quantum computer, we get away with running time $\mathcal{O}(2^{n/2})!$

Horst Görtz Institute for IT-Security

 $2Q$

The Components

Hadamard *H* ⊗*n*

$$
\left|a\right\rangle \mapsto \sum_{x} (-1)^{\left\langle a,x\right\rangle }\left|x\right\rangle
$$

U_f as phase flipping

$$
|x\rangle \mapsto (-1)^{f(x)} |x\rangle
$$

Missing piece: Reflection across the mean of α*^x* .

Horst Görtz Institute for IT-Security ■ 299 ÷.

Reflection Across the Mean

Unitary Reflection Map

We consider the mapping

$$
R=2P-I
$$

where

$$
P=\left(\frac{1}{2^n}\right)_{i,j\in\{1..2^n\}}
$$

Applied to $\phi = \sum_{\mathsf{x}} \alpha_{\mathsf{x}} \ket{\mathsf{x}}$ we get

$$
(R\phi)_j = (P - (I - P)\phi)_j = \overline{\alpha} - (\alpha_j - \overline{\alpha})
$$

where

$$
\overline{\alpha} = \frac{1}{2^n} \sum_x \alpha_x
$$

Not discussed here: *R* is efficient if *H* is.

Grover's Algorithm

Grover's Algorithm

- \bullet Start with $|0\rangle$
- ² Apply *H* ⊗*n*
- ³ Repeat *t* times
	- \bullet Apply U_f as phase flipping
	- ² Apply reflection *R*
- ⁴ Measure the state.
- If $t \approx 2^{n/2}$ then result is x_0 with high probability.

Example of Grover's Algo

With 3 Qubits

$$
f:\mathbb{F}_2^3\to\mathbb{F}_2
$$

where

$$
f(x)=1 \Leftrightarrow x=3
$$

Horst Görtz Institute for IT-Security ■ イロメイ団 トイミメイミメ 299 ÷.

Example of Grover's Algo

for IT-Security ■ 299

Þ

イロトメ 御 トメ 老 トメ 老 ト

Example of Grover's Algo

 299

Example of Grover's Algo

for IT-Security ■ 299

Example of Grover's Algo

Example of Grover's Algo

Example of Grover's Algo

Example of Grover's Algo

Example of Grover's Algo

Example of Grover's Algo

Example of Grover's Algo

for IT-Security ■ 299 Þ

Generalization of Grover: Amplitude Amplification

Brassard, Høyer ('97) generalized the idea: **Given**

- A classically efficient function that decides if a state is good or bad
- A quantum algorithm that results in a good state with probability *p*.

 $\mathcal{O}(\rho^{-1/2})$ iterations of generalized Grover will result in a good state with large probability.

> $2Q$ э

Outline

[Quantum Basics](#page-5-0)

- 4 [Grover and Simon on Symmetric Crypto](#page-71-0)
- [The FX Construction](#page-76-0)

Quantum Attacks on Symmetric Crypto

Basically two attacks known:

Simon's Algorithm

Used to e.g. break Even-Mansour

Grover's Algorithm

Used to speed-up brute force

Grover's Algorithm to break block ciphers

Generic block cipher

$$
\text{Enc}(m) = E_k(m)
$$
\n
$$
m \longrightarrow E_k \longrightarrow c
$$

Conversion into Grover's problem (given a message/cipher-text pair):

$$
f(x) = \begin{cases} 1 & \text{if } E_x(m) = c \\ 0 & \text{else} \end{cases}
$$

Simon's Algorithm

Simon's Algorithm

Given $F:\mathbb{F}_2^n \to \mathbb{F}_2^n$ such that $\exists s$

$$
F(x) = F(x + s) \quad \forall x
$$

than one can recover *s* in linear time.

- \bullet Originally: $F(x) = F(y) \Leftrightarrow y = x + s$
- Used by Kuwakado and Morii to break Even-Mansour

Horst Görtz Institute for IT-Security

> ÷. QQ

• Extended to many modes in [KLLNP]

Simon's Algorithm to break EM

The Even-Mansour scheme:

$$
Enc(m) = E(m + k_0) + k_1
$$

Conversion into Simon's problem:

$$
F(x) = \mathsf{Enc}(x) + P(x)
$$

Then

$$
F(x) = F(x + k_0)
$$

The Attack (with quantum queries) Apply Simon's algorithm to F . Recover k_0 in linear time.

Outline

- **[Introduction](#page-1-0)**
- **[Quantum Basics](#page-5-0)**
- **[Grover](#page-23-0)**
- 4 [Grover and Simon on Symmetric Crypto](#page-71-0)
- 5 [The FX Construction](#page-76-0)

Combine?

We can break:

The FX-Construction

FX-Construction

*m k*0 *Ek k*1 *c*

Question

How to attack the FX construction in a quantum setting?

Attacking the FX construction

Question

How to attack the FX construction in a quantum setting?

This is actually a question about:

Combining Simon and Grover

How to combing Simon's and Grover's algorithm?

Let's have a closer look.

for IT-Security $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $2Q$

Inside Simon's Algorithm

Key-features:

- Requires to implement $Enc(x) + P(x)$ as unitary embedding.
- Running once and measuring results in *x* s.t.

$$
\langle k_0,x\rangle=0
$$

• Running $n + \epsilon$ times results in k_0 by solving linear equation

Horst Görtz Institute I for IT-Security II

 $2Q$

Inside Grover's Algorithm (Amplitude Amplification)

Grover diffusion operator

Key-features:

- Requires a quantum algorithm $\mathcal A$ with initial success probability *p*.
- Requires phase-flipping for good states
- Running *p*^{-1/2} times results in a good state with high prob⁻

 $2Q$

Combining: Avoid Measurements

Approach: Use Simon's algo for A

Problem

Measuring not allowed in A for Grover. Simon's algo requires measuring.

Combining: Avoid Measurements

Approach: Use Simon's algo for $\mathcal A$

Problem

Measuring not allowed in A for Grover. Simon's algo requires measuring.

for IT-Security I

 $2Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Sketch of the solution:

- Run $n + \epsilon$ Simons in parallel
- \bullet Linear algebra to compute candidate for k_0
- Check against message/cipher-text pairs
- \bullet If that fits: flip the phase

Parallel Simon: A bit more details

$$
m \leftarrow \stackrel{k_0}{\longrightarrow} \begin{array}{c} k_1 \\ \hline \rule{0mm}{2mm}E_{k_3} \end{array} \quad \stackrel{k_1}{\longrightarrow} \quad c
$$

Running Simon's Algorithm in parallel results in states

$$
\phi = \sum_{k'_3, x=(x_1,...,x_s)} \alpha_{k'_3,x} |k\rangle |x\rangle
$$

$$
= \sum_{k'_3, x=(x_1,...,x_s)} \alpha_{k'_3,x} |k\rangle |x_1,...,x_s\rangle
$$

such that

$$
\alpha_{x,k_3}\neq 0 \Rightarrow \langle x_i,k_0\rangle = 0
$$

for all *i*.

Question

How do we continue without measuring?

Parallel Simon: A bit more details

$$
m \leftarrow \stackrel{k_0}{\longrightarrow} \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c} & k_1 & k_2 & k_3 & k_4 \end{array}
$$

$$
\phi = \sum_{k'_3, x=(x_1,...,x_s)} \alpha_{k'_3,x} |k\rangle |x\rangle
$$

such that

$$
\alpha_{k_3,x}\neq 0 \Rightarrow \langle x_i,k_0\rangle =0
$$

l etitite ecurity **II** つへへ

for all *i*. We have to identify good states.

Good States

States where $k'_3 = k_3$.

Parallel Simon: A bit more details

Good States

States where $k'_3 = k_3$.

Given $|k\rangle |x_1, \ldots, x_s\rangle$ we compute

$$
U = \langle x_1, \ldots, x_s \rangle^{\perp}
$$

- **If dim** $U = n$ **state is bad.**
- If dim *U* < *n* − 1 state is bad.

Otherwise:

Parallel Simon: A bit more details

We found our candidate key

$$
U=\langle k_0'\rangle
$$

Here:

Check if k'_3 , k_0 ' matches with known cipher-text/plain-text pairs

for IT-Security

 $2Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- YES: state is good.
- NO: state is bad.

Efficient

Classification of states is efficient.

Remains: Check that error probability is small.

Result

Result

The FX construction can be broken in time $\mathcal{O}(2^{n/2})$. Quantum computer gets *n* times bigger.

> Horst Görtz Institute for IT-Security ■ 299 ÷,

Outline

- **[Introduction](#page-1-0)**
- **[Quantum Basics](#page-5-0)**
- **[Grover](#page-23-0)**
- 4 [Grover and Simon on Symmetric Crypto](#page-71-0)
- [The FX Construction](#page-76-0)

Conclusion

In a quantum world

is as secure (linear overhead) as

$$
m \longrightarrow E_k \longrightarrow c
$$

Horst Görtz Institute for IT-Security ■

> 299 Þ

Key-Alternating Ciphers

Key-Alternating Ciphers

Key-Alternating Ciphers

c

Key-Alternating Ciphers

m R_2 R_1 R_{r-1} R_2

> Horst Görtz Institute for IT-Security ■ イロン イ団 メイミン イミン \equiv 990

c

Key-Alternating Ciphers

m

and a series of the

Polynomial attack on key-alternating ciphers

c

Key-Alternating Ciphers

and a series of the

c

Polynomial attack on key-alternating ciphers does not work like that

Future Work

Possible future topics:

- Correct attacks on key-alternating ciphers
- Other applications of Simon/Grover combination

Thank you.

