Quantum Attacks on Symmetric Cryptography

Gregor Leander (joint work with Alex May)

MMC 2017

Outline

- 2 Quantum Basics
- Grover
- Grover and Simon on Symmetric Crypto
- 5 The FX Construction

Main Message

• Quantum attacks on symmetric schemes understudied.

for IT-Security

・ロット (雪) (日) (日)

- Basic conclusion is: double the key-length.
- Two most popular generic ways of doing so:
 - Multiple-encryption
 - FX-construction
- Both not as good as you might think.
 - Multiple encryption: Kaplan 2014
 - FX construction: This talk

My Master Thesis (I/II)

Gregor Leander QUANTENCOMPUTER Betreuer: Michael Hortmann, Jens Gamst

Horst Görtz Institute

(日)

My Master Thesis(II/II)

for IT-Security

イロト イポト イヨト イヨト 二日

Outline

- Quantum Basics
- 3 Grover
- Grover and Simon on Symmetric Crypto
- 5 The FX Construction

From Bits to Qubits

One Qubit

The state x of one Qubit is a unit vector in \mathbb{C}^2 .

Just notation:

$$|0\rangle = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \quad \text{and} \quad |1\rangle = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

Examples for states:

$$\begin{array}{rcl} x_0 &=& |0\rangle \approx 0 \\ x_1 &=& |1\rangle \approx 1 \\ x_2 &=& \alpha_0 \, |0\rangle + \alpha_1 \, |1\rangle \approx ? \end{array}$$

where

$$||\alpha_0||^2 + ||\alpha_1||^2 = 1$$

Horst Görtz Institute

3

・ロト ・聞 ト ・ヨト ・ヨト

Two Qubits

Two Qubits

The state *x* of two Qubits is a unit vector in $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

(Not) just notation:

$$|0\rangle |0\rangle = |00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \text{ and } |0\rangle |1\rangle = |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$$
$$|1\rangle |0\rangle = |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \text{ and } |1\rangle |1\rangle = |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \text{ hore forthermula}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Two Qubits

Two Qubits

The state *x* of two Qubits is a unit vector in $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

Examples for states:

$$\begin{array}{lll} x_{0} & = & |00\rangle \approx 00 \\ x_{1} & = & |10\rangle \approx 10 \\ x_{2} & = & \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle \approx ? \end{array}$$

where

$$||\alpha_{00}||^{2} + ||\alpha_{01}||^{2} + ||\alpha_{10}||^{2} + ||\alpha_{11}||^{2} = 1$$

n Qubits

n Qubits

The state *x* of *n* Qubits is a unit vector in $(\mathbb{C}^2)^{\otimes n} \cong \mathbb{C}^{2^n}$.

Notation

For $x \in \mathbb{F}_2^n$ we denote

$$|x\rangle = |x_1, \ldots, x_n\rangle = |x_1\rangle \ldots |x_n\rangle = e_x$$

Examples:

$$\phi_1 = |\mathbf{x}\rangle \approx \mathbf{x} \quad \text{or} \quad \phi_2 = \sum_{\mathbf{x} \in \mathbb{F}_2^n} \alpha_{\mathbf{x}} \, |\mathbf{x}\rangle \approx ?$$

 $\sum_{x} ||\alpha_x||^2 = 1$

Horst Görtz Institute

3

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

 $x \in \mathbb{F}_2^n$

where

Computation: The principle

Given a quantum computer with *n* Qubits.

$$\phi = \sum_{\boldsymbol{x} \in \mathbb{F}_2^n} \alpha_{\boldsymbol{x}} \left| \boldsymbol{x} \right\rangle$$

How do we conpute on that? How does the state change?

Computation: The principle

Given a quantum computer with *n* Qubits.

$$\phi = \sum_{\boldsymbol{x} \in \mathbb{F}_2^n} \alpha_{\boldsymbol{x}} \left| \boldsymbol{x} \right\rangle$$

How do we conpute on that? How does the state change?

Computation = Unitary Matrices

Any computation on a Quantum Computer corresponds to applying an unitary matrix.

Evolution of the state:

$$\phi \Rightarrow \pmb{U}\phi$$

As U is unitary:

$$||\phi||^2 = ||\mathcal{U}\phi||^2 = 1$$

Two Qubit XOR:

XOR

Find U such that

$$\ket{ab} = \ket{a}\ket{b} \mapsto \ket{a}\ket{a \oplus b}$$

Two Qubit XOR:

XOR

Find U such that

$$\ket{ab}=\ket{a}\ket{b}\mapsto\ket{a}\ket{a\oplus b}$$

On the basis we get:

$$egin{aligned} U \left| 00
ight
angle &= \left| 00
ight
angle & U \left| 01
ight
angle &= \left| 01
ight
angle \\ U \left| 10
ight
angle &= \left| 11
ight
angle & U \left| 11
ight
angle &= \left| 10
ight
angle \end{aligned}$$

Horst Görz Institute for fF-Security

Two Qubit XOR:

XOR

Find U such that

$$\ket{ab}=\ket{a}\ket{b}\mapsto\ket{a}\ket{a\oplus b}$$

Horst Görtz Institute for If-Security

Two Qubit XOR:

XOR

Find U such that

$$\ket{ab} = \ket{a}\ket{b} \mapsto \ket{a}\ket{a \oplus b}$$

A permutation matrix:

$$U = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

Horst Görtz Institute for IT-Security

・ロト ・聞ト ・ヨト ・ヨト

More general: Boolean Function

n Qubit Boolean Function:

$$f: \mathbb{F}_2^n \to \mathbb{F}_2$$

U_f on (n + 1) Qubits

Find U_f such that for all $a \in \mathbb{F}_2^n$ and $b \in \mathbb{F}_2$:

 $\ket{ab} = \ket{a}\ket{b} \mapsto \ket{a}\ket{f(a) \oplus b}$

- U_f is quantum version of f
- Again a permutation matrix
- Efficient if *f* is efficient on classical computers.

hputers. horizon horiz

Non classical: Conditional Flip

One Qubit, no classical equivalent:

Phase flipping

Consider U such that

$$\ket{a}\mapsto (-1)^{a}\ket{a}$$

$$U\ket{0}=\ket{0}$$
 $U\ket{1}=-\ket{1}$

As a matrix:

$$U = \left(\begin{array}{rrr} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Horst Görtz Institute for IT-Security

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Last but not least: Hadamard

One one Qubit, again no classical equivalent:

Hadamard (ignoring scaling)

Consider U such that

$$\ket{a}\mapsto \ket{0}+(-1)^{a}\ket{1}$$

$$U \ket{0} = \ket{0} + \ket{1}$$
 $U \ket{1} = \ket{0} - \ket{1}$

As a matrix:

 $U = \left(\begin{array}{rrr} 1 & 1 \\ 1 & -1 \end{array}\right)$

Horst Görtz Institute

3

・ロット 御 とう ひょう く

Last but not least: Hadamard

Generalization to n Qubits:

Hadamard on *n* Qubits

Consider $H^{\otimes n}$ such that

$$\ket{a}\mapsto \sum_{x}(-1)^{\langle a,x
angle}\ket{x}$$

- $H^{\otimes n}$ is *H* applied to each Qubit.
- Thus, it is efficient if *H* is.
- Special case:

$$egin{aligned} \mathcal{H}^{\otimes n} \ket{\mathsf{0}} &= \sum_{x \in \mathbb{F}_2^n} \ket{x} \end{aligned}$$

Horst Görtz Institute

э

A D > A P > A D > A D >

All Executions at Once

A small example

Putting things together: First H, then U_f .

$$egin{array}{rcl} \ket{0}\ket{0}&\mapsto&\sum_{x\in\mathbb{F}_2^n}\ket{x}\ket{0}\ &\mapsto&\sum_{x\in\mathbb{F}_2^n}\ket{x}\ket{f(x)} \end{array}$$

We evaluated a function on all inputs at once!

Measurement

Make it classical

In order to use the output of a QC classically, we have to measure the state.

Consider an *n*-Qubit state:

$$\phi = \sum_{\boldsymbol{x} \in \mathbb{F}_2^n} \alpha_{\boldsymbol{x}} \left| \boldsymbol{x} \right\rangle$$

Measurement

The measurement $M(\phi)$ of ϕ results in x with probability $||\alpha_x||^2$.

Horst Görtz Institute

・ロット (雪) (日) (日)

Measurement

Example on two Qubits

$$x = \frac{1}{\sqrt{2}} \ket{00} - \frac{1}{\sqrt{2}} \ket{11}$$

- $M(\phi) = 00$ with probability 1/2
- $M(\phi) = 11$ with probability 1/2
- $M(\phi) = 10$ with probability 0
- $M(\phi) = 00$ with probability 0

Task of Quantum Computing

Make the correct/interessting result appear with overwhelming probability.

nstitute

Outline

- 4 Grover and Simon on Symmetric Crypto
- 5 The FX Construction

The Setting

Generic Search Problem

Given $f : \mathbb{F}_2^n \to \mathbb{F}_2$ such that

$$f(x) = \begin{cases} 1 & \text{if } x = x_0 \\ 0 & \text{if } x \neq x_0 \end{cases}$$

find x_0 .

Classically: We need $\mathcal{O}(2^n)$ evaluations of f.

Grover's Solution

On a quantum computer, we get away with running time $\mathcal{O}(2^{n/2})!$

Horst Görtz Institute

・ロット (雪) (日) (日)

The Components

Hadamard $H^{\otimes n}$

$$\ket{a}\mapsto \sum_{x}(-1)^{\langle a,x
angle}\ket{x}$$

U_f as phase flipping

$$|x\rangle\mapsto (-1)^{f(x)}|x\rangle$$

Missing piece: Reflection across the mean of α_{x} .

Horst Görtz Institute for IT-Security

э

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Reflection Across the Mean

Unitary Reflection Map

We consider the mapping

$$R = 2P - I$$

where

$$P = \left(\frac{1}{2^n}\right)_{i,j\in\{1..2^n\}}$$

Applied to $\phi = \sum_{x} \alpha_{x} |x\rangle$ we get

$$(\mathbf{R}\phi)_j = (\mathbf{P} - (\mathbf{I} - \mathbf{P})\phi)_j = \overline{\alpha} - (\alpha_j - \overline{\alpha})$$

where

$$\overline{\alpha} = \frac{1}{2^n} \sum_{x} \alpha_x$$

Not discussed here: *R* is efficient if *H* is.

Grover's Algorithm

Grover's Algorithm

- Start with $|0\rangle$
- 2 Apply H^{⊗n}
- Repeat t times
 - Apply *U_f* as phase flipping
 - Apply reflection R
- Measure the state.
- If $t \approx 2^{n/2}$ then result is x_0 with high probability.

Example of Grover's Algo

With 3 Qubits

$$f: \mathbb{F}_2^3 \to \mathbb{F}_2$$

where

$$f(x) = 1 \Leftrightarrow x = 3$$

Horst Görz Institute for IT-Security

Example of Grover's Algo

for IT-Security

э

・ロト ・聞ト ・ヨト ・ヨト

Quantum Basics Grover Grover and Simon on Symmetric Crypto Introduction

Example of Grover's Algo

for IT-Security

・ロト ・聞ト ・ヨト ・ヨト э

Quantum Basics Grover Grover and Simon on Symmetric Crypto Introduction

Example of Grover's Algo

for IT-Security

Grover Introduction **Quantum Basics**

Example of Grover's Algo

for IT-Security

Quantum Basics Grover Introduction

Example of Grover's Algo

for IT-Security

Grover and Simon on Symmetric Crypto Introduction **Quantum Basics** Grover

Example of Grover's Algo

for IT-Security

Quantum Basics Grover Grover and Simon on Symmetric Crypto Introduction

Generalization of Grover: Amplitude Amplification

Brassard, Høyer ('97) generalized the idea: Given

- A classically efficient function that decides if a state is good or bad
- A quantum algorithm that results in a good state with probability *p*.

 $\mathcal{O}(p^{-1/2})$ iterations of generalized Grover will result in a good state with large probability.

Horst Görtz Institute for IT-Security

Outline

- Quantum Basics
- 3 Grove
- Grover and Simon on Symmetric Crypto
- 5 The FX Construction

Quantum Attacks on Symmetric Crypto

Basically two attacks known:

Simon's Algorithm

Used to e.g. break Even-Mansour

Grover's Algorithm

Used to speed-up brute force

Grover's Algorithm to break block ciphers

Generic block cipher

$$Enc(m) = E_k(m)$$

$$m \longrightarrow E_k \longrightarrow c$$

Conversion into Grover's problem (given a message/cipher-text pair):

$$f(x) = \begin{cases} 1 & \text{if } E_x(m) = c \\ 0 & \text{else} \end{cases}$$

Simon's Algorithm

Simon's Algorithm

Given $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ such that $\exists s$

$$F(x) = F(x+s) \quad \forall x$$

than one can recover *s* in linear time.

- Originally: $F(x) = F(y) \Leftrightarrow y = x + s$
- Used by Kuwakado and Morii to break Even-Mansour

Horst Görtz Institute

э

・ 日 ト ・ 同 ト ・ 日 ト ・ 日 ト

Extended to many modes in [KLLNP]

Simon's Algorithm to break EM

The Even-Mansour scheme:

$$\mathsf{Enc}(m) = \mathsf{E}(m+k_0) + k_1$$

1.

nstitute E ecurity E

$$m \xrightarrow{K_0} P \xrightarrow{K_1} c$$

Conversion into Simon's problem:

$$F(x) = \frac{\mathsf{Enc}(x) + P(x)}{\mathsf{Enc}(x)}$$

Then

$$F(x)=F(x+k_0)$$

The Attack (with quantum queries) Apply Simon's algorithm to F. Recover k_0 in linear time.

۱.

Outline

- 1 Introduction
- Quantum Basics
- 3 Grover
- Grover and Simon on Symmetric Crypto
- 5 The FX Construction

Combine?

We can break:

Even-Mansour $m \xrightarrow{k_0} P \xrightarrow{k_1} c$ Time: $\mathcal{O}(n)$

(日)

What about combining this?

The FX-Construction

FX-Construction

Question

How to attack the FX construction in a quantum setting?

Attacking the FX construction

Question

How to attack the FX construction in a quantum setting?

This is actually a question about:

Combining Simon and Grover

How to combing Simon's and Grover's algorithm?

Let's have a closer look.

Horst Görtz Institute for ff-Security

Inside Simon's Algorithm

Key-features:

- Requires to implement Enc(x) + P(x) as unitary embedding.
- Running once and measuring results in x s.t.

$$\langle k_0, x \rangle = 0$$

• Running $n + \epsilon$ times results in k_0 by solving linear equations **G**

Horst Görtz Institute

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Inside Grover's Algorithm (Amplitude Amplification)

Grover diffusion operator

Key-features:

- Requires a quantum algorithm A with initial success probability *p*.
- Requires phase-flipping for good states
- Running $p^{-1/2}$ times results in a good state with high prot **O**

A D > A P > A D > A D >

Combining: Avoid Measurements

Approach: Use Simon's algo for $\ensuremath{\mathcal{A}}$

Problem

Measuring not allowed in $\ensuremath{\mathcal{A}}$ for Grover. Simon's algo requires measuring.

Combining: Avoid Measurements

Approach: Use Simon's algo for $\ensuremath{\mathcal{A}}$

Problem

Measuring not allowed in $\ensuremath{\mathcal{A}}$ for Grover. Simon's algo requires measuring.

・ロット (雪) (日) (日)

Sketch of the solution:

- Run $n + \epsilon$ Simons in parallel
- Linear algebra to compute candidate for k₀
- Check against message/cipher-text pairs
- If that fits: flip the phase

Parallel Simon: A bit more details

$$m \xrightarrow{k_0} E_{k_3} \xrightarrow{k_1} c$$

Running Simon's Algorithm in parallel results in states

$$\phi = \sum_{\substack{k'_3, x = (x_1, \dots, x_s) \\ k'_3, x = (x_1, \dots, x_s)}} \alpha_{k'_3, x} |k\rangle |x_1, \dots, x_s\rangle$$

such that

$$\alpha_{\mathbf{x},\mathbf{k}_3} \neq \mathbf{0} \Rightarrow \langle \mathbf{x}_i, \mathbf{k}_0 \rangle = \mathbf{0}$$

for all *i*.

Question

How do we continue without measuring?

Parallel Simon: A bit more details

$$m \xrightarrow{k_0} E_{k_3} \xrightarrow{k_1} c$$

$$\phi = \sum_{\mathbf{k}_{3}', \mathbf{x} = (\mathbf{x}_{1}, ..., \mathbf{x}_{s})} \alpha_{\mathbf{k}_{3}', \mathbf{x}} |\mathbf{k}\rangle |\mathbf{x}\rangle$$

such that

$$\alpha_{k_3,x} \neq \mathbf{0} \Rightarrow \langle x_i, k_0 \rangle = \mathbf{0}$$

nstitute

for all *i*. We have to identify good states.

Good States

States where $k'_3 = k_3$.

Parallel Simon: A bit more details

Good States

States where $k'_3 = k_3$.

Given $|k\rangle |x_1, \dots, x_s\rangle$ we compute

$$U = \langle x_1, \ldots, x_s \rangle^{\perp}$$

- If dim U = n state is bad.
- If dim U < n 1 state is bad.

Otherwise:

We found our candidate key

$$U = \langle k_0'
angle$$

stitute

(日)

Parallel Simon: A bit more details

We found our candidate key

$$U=\langle k_0'
angle$$

Here:

 Check if k₃', k₀' matches with known cipher-text/plain-text pairs

・ロット (雪) (日) (日)

- YES: state is good.
- NO: state is bad.

Efficient

Classification of states is efficient.

Remains: Check that error probability is small.

Result

Result

The FX construction can be broken in time $O(2^{n/2})$. Quantum computer gets *n* times bigger.

Horst Görz Institute for IT-Security

Outline

- 1 Introduction
- Quantum Basics
- 3 Grover
- Grover and Simon on Symmetric Crypto
- 5 The FX Construction

Conclusion

In a quantum world

is as secure (linear overhead) as

Horst Görtz Institute

(日)

Key-Alternating Ciphers

Key-Alternating Ciphers

Key-Alternating Ciphers

С

Key-Alternating Ciphers

С

Key-Alternating Ciphers

т

.

Polynomial attack on key-alternating ciphers

С

Key-Alternating Ciphers

.

С

Polynomial attack on key-alternating ciphers does not work like that

Future Work

Possible future topics:

- Correct attacks on key-alternating ciphers
- Other applications of Simon/Grover combination

Thank you.

